Olga dynamic multiphase flow simulator
The industry-standard tool for dynamic multiphase flow simulation
The industry-standard tool for dynamic multiphase flow simulation.
Pipesim access and versatility
The Pipesim steady-state multiphase flow simulator includes a rich and fully documented application programming interface (API) called Python Toolkit that serves as an extensibility framework to facilitate communication with Pipesim models directly without opening the User Interface (UI). The Python Toolkit streamlines automating building modeling from scratch, updating existing models, running simulations and getting results back to Excel to any visualization dashboard using Python language. Clients can combine machine learning techniques in Python with Pipesim’s powerful multiphase flow simulation capabilities to unleash unlimited innovation and research opportunities.
Through integration with other SLB and third-party software products, the Pipesim simulator allows you to build a fully integrated model of the entire asset, connecting with reservoir and process simulators such as the Eclipse industry-reference reservoir simulator, Aspen HYSYS, Honeywell UniSim and KBC Petro-SIM, as well as real-time data for online optimization.
A number of modules are available to extend the base system
Network analysis
Model networks with add-ons for well optimization and Linux engine computation. See ANWA-J1.
PVT toolbox
Module for compositional fluid modeling using the Schlumberger Eclipse-300 and DBR Flash packages. An add-on is also available for Advanced Gas Equations of State (includes NIST REFPROP and GERG PVT packages), designed to accurately model gas systems, particularly compositions rich in CO2.
Multiflash
Enables compositional fluid modeling and advanced flow assurance analyses. The Module includes the Multiflash standalone interface in addition to the simplified interface available within Pipesim. Individual add-ons are available for the CSMA Equation of State, hydrates analysis, wax thermodynamic prediction and asphaltene prediction.
Olga steady-state flow
Steady-state versions of the 2- and 3-phase mechanistic multiphase flow models used with the Olga transient simulator.
LedaFlow steady-state flow
Steady-state versions of the 2- and 3-phase mechanistic multiphase flow models used with the Kongsberg LedaFlow transient simulator.
Rod pump design, optimization, and diagnostics
Rod pump design and optimization. A separate module provides diagnostic analysis for rod pump systems.
Solids deposition and precipitation
One module enables the DBR-Solids standalone application to perform detailed fluid characterization defining wax properties. An add-on enables associated calculations using wax properties. Another module enables the DBR-Solids application to predict wax and asphaltene precipitation temperatures.
Pipesim extensibility and integration training courses address the unique need of each learner, our courses, delivered by world-class experts, teach learners how to deal with real-life scenarios and solve genuine problems.
Pipesim access and versatility
Ensures fluid flow to maintain production—from pore to process
The foundation for steady-state multiphase flow analysis
Advanced network simulation to analyze and optimize complex production and injection networks
Optimize well performance through comprehensive modeling of completions and artificial lift systems
Single-line multiphase flow model add-on to process simulators