Product Sheet CN MOZLEY Wellhead Desander
Cyclone inserts separate solids from production wellhead streams.
Solids removal system
The MOZLEY Wellhead Desander solids removal system provides unmatched performance and durability in one of the most difficult and important solids management applications: sand removal from wellhead fluids. To provide the most effective desanding and offer the best protection for equipment downstream of the wellhead, choosing the best hydrocylone configuration is key.
MOZLEY Wellhead Desander solids removal systems mitigate the effects of sand production, such as mechanical damage to equipment; erosion of pumps, valves, chokes, and flowlines; and reduction in separator capacity due to settlement of sand. The systems use a simple, compact design based on solid-liquid hydrocyclones to separate solids from both the gas and liquid components of well fluids. The hydrocyclone housings can be customized to handle high wellstream pressures and widely varying feed conditions.
Selection of the hydrocyclone internals depends on the range of viscosities and specific gravities of the well fluids and the operating gas/liquid ratios. Proper selection ensures optimal performance throughout the operating ranges and provides equipment downstream of the desanding system with superior wear protection.
MOZLEY Wellhead Desander systems employ solid liners made of special silicon nitride ceramic material developed expressly for use in hydrocyclone liners. These liners last eight times longer than competitive alumina ceramic desanders or ceramic-coated hydrocyclones. This provides a reduction of downtime stemming from hydrocyclone wear and replacement, which lowers operating expense. Additionally, the liners are self-cleaning, and slugging of solids will not plug them, further reducing downtime and lowering opex.
The core of the system is the hydrocyclone liner. Use of extensively enhanced geometrical features and specifically selected construction materials maximizes performance and minimizes erosion in aggressive multiphase well fluid environments. Multiple hydrocyclones are typically installed within a pressure vessel, providing significantly greater efficiency and operating life compared with a large-diameter single hydrocyclone or ceramic-coated metal inserts.
These hydrocyclone clusters cope with the surges of gas and liquid flows much better than large-diameter single hydrocyclones, operating instantaneously to achieve solids separation. With a single hydrocyclone, any high-concentration slugs of solids can potentially block the inlet and underflow, preventing flow.
For less-demanding separation duties, a large-diameter single liner—typically 10-in diameter or greater—can be used. Packaged in a vessel, the single-liner design can reduce costs compared with multiple liners.